Decomposing Cubic Graphs into Connected Subgraphs of Size Three

نویسندگان

  • Laurent Bulteau
  • Guillaume Fertin
  • Anthony Labarre
  • Romeo Rizzi
  • Irena Rusu
چکیده

Let S = {K1,3,K3, P4} be the set of connected graphs of size 3. We study the problem of partitioning the edge set of a graph G into graphs taken from any non-empty S′ ⊆ S. The problem is known to be NP-complete for any possible choice of S′ in general graphs. In this paper, we assume that the input graph is cubic, and study the computational complexity of the problem of partitioning its edge set for any choice of S′. We identify all polynomial and NP-complete problems in that setting, and give graph-theoretic characterisations of S′-decomposable cubic graphs in some cases.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

TOTAL DOMINATION POLYNOMIAL OF GRAPHS FROM PRIMARY SUBGRAPHS

Let $G = (V, E)$ be a simple graph of order $n$. The total dominating set is a subset $D$ of $V$ that every vertex of $V$ is adjacent to some vertices of $D$. The total domination number of $G$ is equal to minimum cardinality of total dominating set in $G$ and denoted by $gamma_t(G)$. The total domination polynomial of $G$ is the polynomial $D_t(G,x)=sum d_t(G,i)$, where $d_t(G,i)$ is the numbe...

متن کامل

Decomposing plane cubic graphs

It was conjectured by Hoffmann-Ostenhof that the edge set of every cubic graph can be decomposed into a spanning tree, a matching and a family of cycles. We prove the conjecture for 3-connected cubic plane graphs and 3-connected cubic graphs on the projective plane. Our proof provides a polynomial time algorithm to find the decomposition for 3-connected cubic plane graphs.

متن کامل

Distinct edge geodetic decomposition in graphs

Let G=(V,E) be a simple connected graph of order p and size q. A decomposition of a graph G is a collection π of edge-disjoint subgraphs G_1,G_2,…,G_n of G such that every edge of G belongs to exactly one G_i,(1≤i ≤n). The decomposition 〖π={G〗_1,G_2,…,G_n} of a connected graph G is said to be a distinct edge geodetic decomposition if g_1 (G_i )≠g_1 (G_j ),(1≤i≠j≤n). The maximum cardinality of π...

متن کامل

Decomposing highly edge-connected graphs into trees of small diameter

The Tree Decomposition Conjecture by Bárat and Thomassen states that for every tree T there exists a natural number k(T ) such that the following holds: If G is a k(T )-edge-connected simple graph with size divisible by the size of T , then G can be edge-decomposed into subgraphs isomorphic to T . The results on modulo k-orientations by Thomassen show that the Tree Decomposition Conjecture hold...

متن کامل

Decomposing highly edge-connected graphs into homomorphic copies of a fixed tree

The Tree Decomposition Conjecture by Barát and Thomassen states that for every tree T there exists a natural number k(T ) such that the following holds: If G is a k(T )-edge-connected simple graph with size divisible by the size of T , then G can be edge-decomposed into subgraphs isomorphic to T . So far this conjecture has only been verified for paths, stars, and a family of bistars. We prove ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016